Finite Simple Groups

Caitlin Ho Calum Lehrach Simon Beyzerov Taya Yakovenko

Worcester Polytechnic Institute

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Cyclic groups of prime order

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Alternating groups

Sporadic groups

Lie type groups

Definition

A subgroup H of a group G is called a normal subgroup of G if aH = Ha for all a in G and is denoted $H \triangleleft G$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Definitions

Definition

A subgroup H of a group G is called a normal subgroup of G if aH = Ha for all a in G and is denoted $H \triangleleft G$.

Definition

A group is simple if its only normal subgroups are the trivial subgroup and the group itself.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Relation to Sylow Theory

Theorems

Recall these theorems taken from Gallian [1]:

Theorem (Sylow's Third Theorem)

Let p be a prime and let G be a group of order $p^k m$, where p does not divide m. Then the number n of Sylow p-subgroups of G is equal to 1 mod p and divides m.

Corollary

A Sylow *p*-subgroup is normal in *G* if and only if it is the unique Sylow *p*-subgroup, or equivalently, $n_p = 1$.

Theorem (Sylow Test for Nonsimplicity)

Let *n* be a positive integer that is not prime, and let *p* be a prime divisor of *n*. If 1 is the only divisor of *n* that is equal to $1 \mod p$, then there does not exist a simple group of order *n*.

Relation to Sylow Theory (cont.)

Examples

Examples

There are no simple groups of order 351.

Since $|G| = 351 = 3^3 \cdot 13$, Sylow's Third Theorem tells us that n_{13} divides $3^3 = 27$ so $n_{13} \in \{1, 3, 9, 27\}$. Additionally, we have that $n_{13} \equiv 1 \mod 13$. Thus the only possibilities are $n_{13} = 1$ or 27. A Sylow 13-subgroup P has order 13 and a Sylow 3-subgroup Q has order $3^3 = 27$. Thus $P \cap Q = \{e\}$. Suppose $n_{13} = 27$. Every Sylow 13-subgroup contains 12 nonidentity elements, so G must contain $27 \cdot 12 = 324$ elements of order 13. This leaves 351 - 324 = 27 elements in G with order not 13. Thus, G contains only one Sylow 3-subgroup, so G cannot be simple.

Theorem (Classification of Finite Simple Groups)

Every finite simple group is (isomorphic to) one of the following:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 1. Cyclic group \mathbb{Z}_p of prime order p
- 2. Alternating group A_n for $n \ge 5$
- 3. One of the 16 infinite families of groups of Lie Type
- 4. One of the 26 sporadic groups

Overview Classification Theorem

Copyright () area hose Andree.

The Periodic Table Of Finite Simple Groups

0, C , Z 1	Dynkin Diagrams of Simple Lie Algebras																
	Q										C_2						
1	∧											2					
$A_1(4), A_1(5)$	A ₂ (2)												-				
A_5	$A_{1}(7)$	$B_{\rm e}$	<u>, </u>		Q	ç			G2 (<u>→</u>		B2(3)	C3(3)	D4(2)	${}^{2}D_{4}(2^{2})$	${}^{2}A_{2}(9)$	C_3
60	168	25528 (1917)100 172(152,28) 197,267,20 608										3					
$A_1(9), B_2(2)'$	² G ₂ (3)'																
A_6	$A_{1}(8)$	$B_2(4) C_3(5) D_4(3) \frac{2D_4(3^2)}{A_2(16)} C_3(5) C_4(5) C_4($											C5				
360	504											979 200	228 505 080 808 808	4 952 379 824 480	30 151 568 615 520	62.400	5
										Tits*							
A_7	$A_1(11)$	$E_{6}(2)$	$E_{7}(2)$	$E_{8}(2)$	$F_4(2)$	$G_2(3)$	${}^{3}D_{4}(2^{3})$	${}^{2}E_{6}(2^{2})$	${}^{2}B_{2}(2^{3})$	${}^{2}F_{4}(2)'$	${}^{2}G_{2}(3^{3})$	$B_{3}(2)$	$C_{4}(3)$	$D_{5}(2)$	${}^{2}D_{5}(2^{2})$	${}^{2}A_{2}(25)$	C7
2 520	660	214 641 575 522 005 575 270 400	100 CHC		3 311 125 683 366 438	4 245 696	211 341 312	76 532 479 683 774 853 999 280	29 120	17 971 200	33 873 444 472	1 451 520	65784756 654 699 600	23 499 285 948 800	25 215 279 558 400	126 000	7
A ₃ (2)																	
As	A ₁ (13)	$E_{6}(3)$	E ₇ (3)	$E_{8}(3)$	F4(3)	$G_2(4)$	${}^{3}D_{4}(3^{3})$	${}^{2}E_{6}(3^{2})$	${}^{2}B_{2}(2^{5})$	${}^{2}F_{4}(2^{3})$	${}^{2}G_{2}(3^{5})$	$B_{2}(5)$	$C_{3}(7)$	$D_{4}(5)$	${}^{2}D_{4}(4^{2})$	${}^{2}A_{3}(9)$	C11
20 160	1.092	IDCINOCIDATION AND IN IDCINOCIDATION DO	AND THE REAL PROPERTY OF	10000000	5 734 420 792 835 671 544 761 600	251 596 800	20 560 831 566-912	10.000 00 00 00 00 00 00 00 00 00 00 00 0	32 537 600	264 985 352 699 586 176-534 400	49 625-657 439 340 552	4 690 000	273 497 218 664 953 609	8 911 539 000 000 000 000	67 536 471 295 648 080	3 265 920	11
A ₉	$A_1(17)$	$E_{6}(4)$	E ₇ (4)	$E_{8}(4)$	$F_4(4)$	$G_{2}(5)$	${}^{3}D_{4}(4^{3})$	$^{2}E_{6}(4^{2})$	$^{2}B_{2}(2')$	${}^{2}F_{4}(2^{5})$	² G ₂ (3')	$B_2(7)$	C ₃ (9)	D ₅ (3)	$^{2}D_{4}(5^{2})$	$^{2}A_{2}(64)$	C ₁₃
181.440	2448	Distriction of the local distriction of the local distriction of the local distriction of the local distribution of the lo			25 885 825 825 940 945 451 297 648 120000	5 855 000 000	67802390 642790480	BC-PC-DEVENDER	34.093.383.680	3494107516 4830123690	238 188 900 284 352 348 332 632	138 297 600	499 584 000	541345139200	17 KS0 203 190 800 800 000	\$ \$15 776	13
	Plant((), land()	- ()	- ()			- ()	3	2				Omat(C.Omat(g)	PSp _{2s} (q)	$O^+_{2n}(q)$	O _{2a} (q)	$PSU_{n+1}(q)$	Z.,
An	$A_n(q)$	$E_6(q)$	E7(q)	E ₈ (q)	$F_4(q)$	$G_2(q)$	$^{5}D_{4}(q^{3})$	*E ₆ (q ²)	*B ₂ (2 ³⁺¹)	² F ₄ (2 ^{2e+1})	G2(32+1)	$B_{\pi}(q)$	$C_{n}(q)$	$D_n(q)$	$^*D_n(q^2)$	$^*A_n(q^2)$	Cp
2	The Day of the second s	9-08-07-0 0.e-0	Re-0 [[se -0	2-10-10-10-0 2-10-10-0	N. W. S	$q^2(q^2-1)(q^2-1)$	2-02-8	M-OFTEN-S	$e^{2}(q^{2}+X)(q-3)$	$\frac{q^{0}(q^{0}+1)(q^{0}-1)}{(q^{0}+1)(q-1)}$	$q^2 \dot{q}^2 + \Omega \dot{q} = 0$	$\frac{e}{\alpha_{1}-0}\prod_{i=1}^{n}a^{\alpha}-0$	$\frac{q}{q} \frac{q}{q} = 0 \prod_{i=1}^{n} \frac{q}{q} \frac{q}{q} = 0$		Control Day - 1	$\lim_{t\to\infty} \lim_{t\to\infty} \int_{-\infty}^{\infty} \left[d^2 - (-1)^2 \right]$	p

Alternating Groups														
Classical Chevalley Groups Chevalley Groups	Alternates*						J(1),J(11)	НJ	HJM				6,000,070	
Classical Steinberg Groups	Symbol	M ₁₁	M12	M_{22}	M23	M_{24}	J_1	12	J3	J4	HS	McL	He	Ru
Steinberg Groups														
Suzuki Groups	Order ⁴	7 920	95 040	443 520	10 200 560	244 823 040	175 560	604 800	50 232 960	077 562 550	44 352 000	895 128 000	4 000 367 200	145925144.000
Ree Groups and Tits Group*														
Sporadic Groups														
Cyclic Ce0026 Yer sponsie george and lamites, alternate annes														
	in the upper hill any other names by which they may be known. For specific nen-sporadic groups													
"The Tile group $T_{4}(2)$ " is not a group of Lie tope, but is the findex 21 commutator subgroup of $T_{4}(2)$. It is usually given hereixity Lie type status.	these are used to indicate isomorphism. All such isomorphisms appear on the lable except the lam- by P _n (2*) If C _n (2*).	51	0'N\$,0-\$	-3	-2	4	F3, D	LyS	F3+ E	M(22)	M(23)	$F_{3+}, M(24)^{\prime}$	Б	F_1, M_1
The groups starting on the second now are the clas-	Table simple many an Adversional by their order	Suz	O'N	Co_3	Co ₂	Co ₁	HN	Ly	Th	Fi22	Fi23	Fi ²⁴	В	М
sical groups. The sporadic suzuki group is unadated to the families of Sarahi groups.	with the following exceptions $E_{\mu}(g)$ and $E_{\mu}(g)$ for g odd, $n > 2$: $A_{\mu} \ge A_{\mu}(2)$ and $A_{\mu}(4)$ of order 2000.	445345 897 608	460335565328	495756656000	42 365 421 312 000	4 157 776 806 543 360 300	273-030 912-080-800	51765179 804686080	90 745 943 887 872 000	64 561 791 656 800	4 888 476 473 293 804 880	1255205709190 661721292800		101121-047410475 101-047047410477 101754 34058 580 50

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Examples

Consider the cyclic group $G = (\mathbb{Z}_3, +)$: If H is a subgroup of G, then its order must divide |G| = 3. Since p = 3 is prime, its only divisors are 1 and 3, so either H = G or H is the trivial (identity) group.

Theorem

Every abelian simple group is (isomorphic to) \mathbb{Z}_p .

Theorem Any An, where $n \neq 4$, is a finite simple group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof.

We consider the subgroup H = [1, (12)(34), (13)(24), (14)(23)] in A4. We can verify that this is a normal subgroup by knowing that conjugation $(gHg^{-1} = H)$ does not alter cycle structure. Outside of the identity element, all of the elements are products of two disjoint transpositions and therefore must equal another product of two disjoint transpositions. Therefore H is normal and A4 cannot be simple.

We can see H is normal by observing that it is isomorphic to the Klein 4-Group, $\mathbb{Z}_2\times\mathbb{Z}_2$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ Determine that for n ≥ 5, all elements of An are products of 3-cycles.
- All 3-cycles in An are conjugate, and therefore are normal.
- For any An, this 3-cycle is the only nontrivial normal subgroup. Thus, An is equal to the 3-cycle. An must then be a finite simple group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proving simplicity for n = 1, 2, 3 is trivial.

Example

Consider the Alternating group A6

- ► We set H to be the set of conjugacy classes, H = [(1), (123), (123)(456), (12)(34), (12345), (23456), (1234)(56)]
- (123) is the only 3-cycle element that is invariant under conjugation.
- ▶ The only normal subgroups of A6 are (1) and elements in the form (123), so A6 is a simple finite group.

- The sporadic groups are the 26 finite simple groups that do not fit into any of the four infinite families of finite simple groups (i.e., the cyclic groups of prime order, alternating groups of degree at least five, Lie-type Chevalley groups, and Lie-type groups)
- The smallest sporadic group is the Mathieu group M₁1, which has order 7920, and the largest is the monster group, which has order

80801742479451287588645990496171075700575436800000000.

Sporadic groups

Mathieu group M_{11}	7920	$2^4\cdot 3^2\cdot 5\cdot 11$
Mathieu group M_{12}	95040	$2^6\cdot 3^3\cdot 5\cdot 11$
Janko group J_1	175560	$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
Mathieu group M ₂₂	443520	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$
Janko group $J_2 = HJ$	604800	$2^7\cdot 3^3\cdot 5^2\cdot 7$
Mathieu group M ₂₃	10200960	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
Higman-Sims group HS	44352000	$2^9\cdot 3^2\cdot 5^3\cdot 7\cdot 11$
Janko group J ₃	50232960	$2^7 \cdot 3^5 \cdot 5 \cdot 17 \cdot 19$
Mathieu group M_{24}	244823040	$2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$
McLaughlin group McL	898128000	$2^7\cdot 3^5\cdot 5^3\cdot 7\cdot 11$
Held group He	4030387200	$2^{19} \cdot 3^3 \cdot 5^2 \cdot 7^3 \cdot 17$
Rudvalis Group Ru	145926144000	$2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29$
Suzuki group Suz	448345497600	$2^{13} \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$
O'Nan group O'N	460815505920	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{5} \cdot 11 \cdot 19 \cdot 31$
Conway group Co3	495766656000	$2^{10} \cdot 3^7 \cdot 5^1 \cdot 7 \cdot 11 \cdot 23$
Conway group Co2	42305421312000	$2^{10} \cdot 3^4 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$
Fischer group Fl ₂₂	64561751654400	$2^{17} \cdot 3^8 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$
Harada-Norton group HN	273030912000000	$2^{14} \cdot 3^6 \cdot 5^6 \cdot 7 \cdot 11 \cdot 19$
Lyons Group Ly	51765179004000000	2.5.5
Thompson Group Th	90745943887872000	$1_{0},2_{0},3_{0},3_{1},1_{1},10,10,11$
Fischer group Fi23	4089470473293004800	29.79.99.3-0-0-02.29
Conway group Co1	4157776806543360000	$2^{2}\cdot 3^{2}\cdot 3^{2}\cdot 3^{2}\cdot 3^{2}\cdot 11\cdot 13\cdot 23$
Janko group J ₄	86775571046077562880	1.1.1.1.1.1.1.1.1.1.1.1.1
Fischer group Fi'_{24}	1255205709190661721292800	2.2.2.2.2.00000
baby monster group B	4154781481226426191177580544000000	
monster group M	80801742479451287588645990496171075700575436800000000	

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Sporadic groups

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

- 20 out of the 26 sporadic groups can be "grouped" together into a Happy Family with the other 6 known as Pariahs based on the monster group.
- The monster group is the largest (around 10⁵4) and describes symmetries of a 196883 dimension object
- It takes around 4GB of memory to express only one element of the Monster Group; some groups that have many more elements have much less computationally demanding elements

The Monstrous Moonshine Conjecture

 1970s John McKay - series expansion of modular forms and elliptic functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 1992 Richard Borcherds - defined a connection between monster and string theory

Lie type groups

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Lie groups

Split in group-theoretic research in late 19th century prompted by Sophus Lie's discovery of Lie groups:

- "Discrete" groups/symmetries
- "Continuous" groups/symmetries (Lie group)

Sophus Lie

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Split in group-theoretic research in late 19th century prompted by Sophus Lie's discovery of Lie groups:

- "Discrete" groups/symmetries
- "Continuous" groups/symmetries (Lie group)

Sophus Lie

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A Lie group is a group that is also a finite dimensional smooth manifold, in which the group operations of multiplication and inversion are smooth maps.

Lie type groups

Examples

Additive group of rotations of the unit circle $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}.$

Simple Lie groups

- Classified by Killing in 1890 [2]
- ▶ 4 classical Lie groups, 5 exceptional Lie groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $\blacktriangleright \text{ Classical: } A_n, B_n, C_n, D_n$
- Exceptional: G_2, F_4, E_6, E_7, E_8

Simple Lie groups

- Classified by Killing in 1890 [2]
- 4 classical Lie groups, 5 exceptional Lie groups
 - $\blacktriangleright \text{ Classical: } A_n, B_n, C_n, D_n$
 - ▶ Exceptional: *G*₂, *F*₄, *E*₆, *E*₇, *E*₈

Examples

 B_n describes the odd special orthogonal group SO(n), the group of $n \times n$ (for odd n) rotation matrices with determinant 1 (e.g., SO(3) is the 3D rotation group).

Lie groups are typically defined over continuous fields like $\mathbb R$ or $\mathbb C.$

Can we use continuous groups to get more finite simple groups? From simple Lie groups \rightarrow finite simple groups?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lie groups are typically defined over continuous fields like ${\mathbb R}$ or ${\mathbb C}.$

Can we use continuous groups to get more finite simple groups? From simple Lie groups \rightarrow finite simple groups?

In 1955, Chevalley's seminal work...

showed a connection between the two group types

Claude Chevalley

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lie groups are typically defined over continuous fields like ${\mathbb R}$ or ${\mathbb C}.$

Can we use continuous groups to get more finite simple groups? From simple Lie groups \rightarrow finite simple groups?

In 1955, Chevalley's seminal work...

- showed a connection between the two group types
- discovered finite analogues of simple Lie groups
 - finite simple group of Lie type
 - defined over finite fields \mathbb{F}

Claude Chevalley

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lie type groups

Definition

A field $\mathbb F$ is a set defined under two operators + and \cdot that satisfies:

- Closure under addition and multiplication
- Associativity of addition and multiplication
- Commutativity of addition and multiplication
- Additive and multiplicative identity
- Additive and multiplicative inverses (subtraction and division exist)
- Distributivity of multiplication over addition
 (a · (b + c) = (a · b) + (a · c))

Definition

A finite field is a field of finite order (e.g., \mathbb{Z}_p is a finite field).

Generalizing Chevalley's techniques, group-theorists discovered new finite simple groups. The full classification of finite simple groups of Lie type soon followed:

- 1. Adjoint Chevalley groups
- 2. Twisted adjoint Chevalley groups
 - Steinberg groups (1959)
 - Suzuki-Ree groups (1960-61)
- 3. Tits group

Lie groups of Lie type

Table: Dynkin diagrams of finite simple groups of Lie type (adjoint Chevalley)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lie groups of Lie type

Twisted adjoint Chevalley groups

Steinberg

Table: Dynkin diagrams of twisted adjoint Chevalley groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Joseph A. Gallian. "Finite Simple Groups". In: Contemporary Abstract Algebra. CRC, Taylor &; Francis Group, 2021, pp. 459–479.

 [2] Wilhelm Killing. "Die Zusammensetzung der stetigen endlichen Transformationsgruppen". In: Mathematische Annalen 36.2 (June 1890), pp. 161–189. DOI: 10.1007/bf01207837. URL: https://doi.org/10.1007/bf01207837.