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Abstract

In this paper, we explore the development, identification, and motivations behind a fun-
damental class of time series models: autoregressive conditional heteroskedasticity (ARCH)
models. First introduced by Robert Engle in his seminal work, ARCH models have given
way to a rich class of econometric inquiry. Concerned with conditional-level fluctuations
in variance, this unique class of models allows us to analyze dependence in residual series
data. Finding particular applications within financial time series, ARCH modeling has
shown continued success in risk analysis and volatility forecasting. They have especially
seen applications within asset pricing, where risk is a central concern in making optimal
financial decisions. We examine these considerations and more while discussing the moti-
vations behind such models. By looking at the historical returns of one asset in particular,
we provide a demonstrative analysis of the ARCH modeling process. We identify distinct
effects in our data that suggest an ARCH process and go on to introduce a parsimonious
model that fits our data well and forecasts future volatility.
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1 Introduction

Risk is a central concern in portfolio optimization and a fundamental financial (and general)
decision-making principle. At its core, it’s the simple observation that an action may or may
not result in an undesirable outcome—an inescapable reality that drives our unpredictable
world and governs our decisions. Financial markets are no exception; in finance, we simplify
the concept of risk to a binary outcome: the potential gain (reward) or potential loss in value
of an asset or portfolio. This simplified, unambiguous view of a “desirable” and “undesirable”
outcome has become the central paradigm of financial decision-making.

Optimal decision-making naturally encourages us to consider risk. In a set of possible ac-
tions, some provide larger reward while carrying the same level of potential loss, and thus
are preferred—given the choice, we wish to maximize our gain and minimize our losses. But
perfectly measuring potential movements is fundamentally difficult, if not impossible. To under-
stand these systems, we need models that can estimate risk; we wish to use past observations to
inform our future decisions. This simple challenge has been a central focus of econometricians
and practitioners for the better part of a century.

Although many different ways of measuring risk have been considered, the variance of an
underlying asset has been a consistent metric found to statistically quantify risk. First formally
introduced in the Capital Asset Pricing Model (CAPM) by Sharpe (1964) and further explored
by Black and Scholes (1973) in their pricing of options, the relationship between risk and
variance would come together into the concept of wolatility, computed from the square-root
of the asset’s sample variance. Typically, the realized volatility encompasses the notion of
unconditional variance and is computed over a fixed period. But true volatility is theorized to
be latent and not directly observable (Andersen et al., 2005). Many attempts have been made
to use unconditional variance to approximate instantaneous volatility.

In time-series models, unconditional variance is assumed to be constant for stationarity.
But while this realized volatility is constant over a time period, in the residuals of some time
series, it was observed to fluctuate in clusters (B. Mandelbrot, 1963; B. B. Mandelbrot, 1997).
It was clear that there were some fluctuations in conditional variance over the series, while the
overall realized variance was fixed. This inherent heteroskedasticity at the conditional level was
particularly common in financial systems and asset prices. A consistent model of dynamic risk
forecasting was introduced in the seminal work of Engle (1982). Towards modeling inflation in
the United Kingdom, Engle considered autoregressive conditional heteroskedasticity as opposed
to traditional constant one-period volatility forecasts. The resulting ARCH model generalized
sample variance into a time-varying process while allowing for straightforward parameter esti-
mation from historical observations.

The ARCH model would spark a rich class of econometric research, particularly in finance,
where risk is of particular interest. As evidenced by the many ARCH-type models that would
arise, it was clear that Engle’s approach was pivotal in assessing the volatility of an underlying
asset and forecasting uncertainty in its price. In this work, we consider the application of
ARCH-type modeling on one asset. Our goal is to demonstrate the structure of this powerful,
fundamental model.

Paper organization In Section 2, we describe the general motivation behind time-varying
volatility modeling in financial time series. We then go on to introduce the structure, strengths,
and weaknesses of classic ARCH/GARCH models. Towards understanding the application of
these two classic models in financial forecasting, we consider the daily returns of the NASDAQ
Composite Index in Section 3. Following an initial data description and analysis, we outline
the model-building process for both ARCH and GARCH models, discussing their differences



along the way. In Section 4 we consider the ARCH/GARCH models proposed in Section 3 and
provide relevant diagnostics. These models are then used to forecast the future volatility of the
NASDAQ Composite index. Finally, in Section 5 we consider the forecasting performance of
our proposed models and provide a discussion of our approaches. All references and appendices
can be found at the end of our report—all code and links to outside repositories are included
therein.

2 Background

Engle’s starting point was a residual time series without significant serial correlation, but clear
autocorrelation in its squares. This sort of behavior frequently appeared in residual series of
financial models and suggested some underlying non-random behavior—some dependence in
the series despite an absence of serial correlation. His approach was to model the variance of
this residual series as a time-varying, autocorrelated process of lagged variance values (which
he refers to as a type of “weighted variance” (Engle, 2004)).

Characteristics & Identification Prior to identifying any ARCH effects, we need to shift
our time series into one that fits Engle’s initial archetype: a lack of serial correlation but
clear dependence. To achieve this, we typically remove any serial correlation with an ARMA
model before analyzing the resulting residual series. A residual series exhibiting a strong ARCH
effect will typically exhibit three main characteristics: unpredictability, volatility clustering, and
leptokurticity (Engle, 1982, 2004). Loosely, these characteristics suggest a series where high and
low volatility is sustained in periods, before reverting to a baseline level. When identifying an
ARCH process, we search for evidence of time-varying volatility that is clustered and fat-tail.

Model Construction Once identification is successful, we must estimate the model parame-
ters and orders. Although we will not go into depth regarding parameter estimation algorithms,
we note that once an ARCH process is identified it is relatively difficult to estimate the order
of an ARCH-type model (particularly for ARCH and GARCH models). In practice, it has
been shown that low-order ARCH models perform just as well (or better) at forecasting than
high-order models (Jafari et al., 2007). We elaborate on this further in Section 4.1.

Conditional Mean & Variance Taking a step back, suppose we have derived a time series
ry from a series of observations { P;}. In our analysis, r; will concern the log returns of an asset
while P, is the observed price of the asset at time . We say Z; is the information set up to time
t. Intuitively, we can consider Z; = {P,..., P;}, or the set of all observations up to time ¢. In
the literature, the information set is also seen as the set of all linear functions of past prices.
Towards constructing an ARCH-type model, we typically decompose the base process into a
mean process j; and innovation process €,

Tt = Ut + € (21)
or alternatively through conditional mean j; and variance o2 of ry:
pe = E(re | I), o} = Var(r | T), (2.2)

where €; is not serially correlated. As we’ve discussed previously, an ARCH model’s primary

focus is on describing the conditional variance term o7 as a time-varying series. Since Engle’s

base ARCH assumption is that €, is serially uncorrelated, the mean process p; should capture



all serial correlation in the original series. Although the mean process p; will not be explicitly
discussed in this report, in practice it is typically an ARMA(p, ¢) process. In our final models,
we will explicitly state the ARMA process selected for the conditional mean.!

2.1 Autoregressive Conditional Heteroskedasticity Model (ARCH)

An Autoregressive Conditional Heteroskedasticity Model (ARCH) of order p ARCH(p) is one
that expresses the conditional variance of ARCH process €; as an AR process:

P
o =ag+ Z el .. (2.3)
i=1
The ARCH model attempts to model the short-term instability of the underlying residual
series through its conditional heteroskedasticity. In its base form, the ARCH model places
equal impact on both positive and negative volatility periods—the impact in both directions
is symmetric due to the square of the lags. Typically the residuals of the resulting model are
assumed to follow a normal distribution, but different likelihood estimation algorithms may
assume a different residual distribution.

2.2 Generalized-ARCH Model (GARCH)

A Generalized Autoregressive Conditional Heteroskedasticity Model (GARCH) of orders p and
g GARCH(p, q) is one that expresses the conditional variance of ARCH process ¢; as an ARMA
process:

p q
o =g+ Z el + Z Bio?t_, (2.4)
i=1 i=1

The GARCH model was presented by Bollerslev (1986) to further refine the modeling of condi-
tional variance of an ARCH process. Although GARCH models are typically more parsimonious
than ARCH models, they still fail to capture asymmetric shocks in volatility and suffer the same
general weaknesses of the ARCH model.

3 Data and Model Specification

Data Description In order to demonstrate the use of ARCH modeling, we consider asset
price data in our analysis. Specifically, we look at the monthly log returns of the NASDAQ
composite index. Our data set was obtained from Yahoo Finance and contained the asset’s
monthly price from January 1985 to February 2023. We then fit our model on the log returns
of the price data over one lag, a common transformation to achieve stationarity and to analyze
volatility effects. In the rest of our report, we denote this log-return series as r; and the original
observed price data series as P;.

3.1 Exploratory analysis

We illustrate both the monthly NASDAQ prices and log returns in Figure 1, where we note
that the original price series is clearly non-stationary and has a visible trend. The log-return

IWe refer to the mean process/innovation process and conditional mean/conditional variances interchange-
ably throughout this report, which we try to make clear from context.



Monthly Closing Price and Returns of NASDAQ (1985—2023)
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Figure 1: Daily asset price data of the NASDAQ Composite Index from 1985 to 2023: (bottom)
daily price of NASDAQ), (top) daily log return of the asset.

series appears stationary; we perform an Augmented Dickey-Fuller test in Table 1 to verify
stationarity. We see that the price series exhibits small jumps and falls in value over the course
of the period. Oftentimes, these align with periods of high variance in the log-returns plot.
This evidence of underlying volatility fluctuations urges us to use non-traditional time-series
models.

Mean Process Isolation From our initial suspicion of an ARCH-type model, we attempt to
isolate the log-return series into mean and innovation components. Observing the correlograms
of the log-returns series in Figure 2, it appears there is no significant serial correlation in the
series. This suggests we do not need to isolate a mean process, given that we confirmed the
process to be stationary in Table 1. We go on to check if the log-returns series is an ARCH
process, in absence of a mean series.

Table 1: Results of Augmented Dickey-Fuller Test (without trend) on log-returns of NASDAQ
Composite Index, confirming that the series is stationary.

Test Statistic Critical Value (1%) Critical Value (5%) p-value
-7.1274 -3.43 -2.86 < 0.01

Volatility Clustering The first property of an ARCH process we must identify is clustered
volatility. In practice, clustering is typically identified empirically or visually by looking at
the series. In our case, we identify clear clusters of high and low volatility in the log-returns
series. The most identifiable clusters occurred around indices 40, 200, 300, and 450, as seen in
Figure 1.
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Figure 2: Correlelogram of the monthly daily returns of the NASDAQ Composite Index from
1985-2023: (left) ACF of monthly log return and squared monthly log return, (right) PACF of
monthly log return and squared monthly log return.

Conditional Heteroskedasticity Next, we identify if the series is unpredictable and if there
is evidence of conditional heteroskedasticity. Visually, it does appear there are fluctuations in
volatility in Figure 1, but we take a look at the correlograms for the log-returns and squared-
log return series in Figure 2. As before, we observe no serial correlation in the log-returns
series. There appears to be a significant serial correlation in the series of square-log returns,
as evidenced by the sample ACF and PACF. This autocorrelation in the squared series further
supports an ARCH process.

Leptokurticity Finally, an ARCH process should be leptokurtic—peaks and troughs should
frequently appear in the data. In our case, we look at the descriptive statistics in Figure 3 and
conclude that the log-returns series is in fact leptokurtic. The Normal Q-Q plot (along with the
large kurtosis) suggests the series distribution is fat tails. From the exploratory analysis above,
we conclude that the log-returns series exhibits ARCH behavior. We proceed with our ARCH-
type models. Recall that we did not need to isolate any ARMA mean process for this data
sample and thus proceeded to verify the log returns themselves behave as an ARCH process.
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Figure 3: Summary statistics of NASDAQ daily returns from 1985-2023: (left) Normal Q-Q
plot of daily log returns series, (right) descriptive statistics of daily log returns series.



Table 2: Model comparison on NASDAQ historic monthly log returns, fitted under normal and
Student’s t-distribution residual assumptions.

Mean Process  Tnnovation Process Normal distribution Student’s t-distribution
AIC BIC AIC BIC

ARCH(1) -2.795142 -2.768110 -2.879634 -2.843592

ARCH(2) -2.826293 -2.790251 -2.902406 -2.857353

ARMA(0,0)- ARCH(3) -2.850076 -2.805023 -2.929181 -2.875117
’ GARCH(1,1) -2.864962 -2.828919 -2.950039 -2.904986
GARCH(1,2) -2.859456 -2.814403 -2.944416 -2.890353

GARCH(2,1) -2.859487 -2.814434 -2.945114 -2.891050

4 Empirical Analysis & Results

4.1 Model selection

After identifying an underlying ARCH process in the residual series, we must establish the
order of our final (G)ARCH model. As noted in Section 2, the ARCH portion of our process is
modeled separately from the mean and thus we must also identify the order of the underlying
mean ARMA process. While finding the order of the mean series is straightforward with
traditional correlogram techniques, finding the order of ARCH processes is not as easy. In
practice, once ARCH effects have been identified, low-order models have been found to perform
just as well (or better) than high-order models during forecasting (Hansen & Lunde, 2001; Jafari
et al., 2007). We point the reader to literature that proposes alternate techniques (Bollerslev,
1986; Hughes et al., 2004).

In Section 3.1, we noted that our log-returns data does not exhibit any serial correlation
and is stationary. We noted that isolating a mean process was not necessary and accord-
ingly analyzed the ARCH effects directly. This means we do not need an ARMA process to
isolate the mean and thus our model will be of the form ARMA(0,0)-ARCH(m) or ARMA(0,0)-
GARCH(m, s).

Toward a more nuanced analysis of the ARCH portion of the model, we consider both ARCH
and GARCH models with varying orders. We establish ARCH(1), ARCH(2), and ARCH(3)
models based on the high serial correlation in the squared log returns, along with GARCH(1,1),
GARCH(2,1), and GARCH(1,2) models. It has been found that even first-order GARCH models
like GARCH(1,1) perform considerably better than high-order alternatives (Hansen & Lunde,
2001; Jafari et al., 2007).

Parameter estimation In this report, we do not outline estimation techniques for ARCH
models. We point to existing literature that provides a comprehensive summary of the likeli-
hood algorithms frequently entertained (Bauwens et al., 2003). We do note that ARCH models
are frequently instantiated with varying assumptions on the standardized residuals of the final
model. Most commonly these are the normal distribution and Student’s t-distribution (Chat-
field & Xing, 2019; Tsay, 2010). In our analysis, we compare model results for both residual
distributions and report our results for both distribution assumptions. Additionally, we would
like to emphasize that for data where a mean process is to be isolated, parameter estimation is
performed jointly over the mean (ARMA) and residual (ARCH) processes. That is to say, we
typically obtain weaker results from two-step estimates that compute the mean and residual
model parameters separately (Tsay, 2010).
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Figure 4: Standardized residuals of ARMA(0,0)-GARCH(1,1) model under Student’s t-
distribution: (left) standardized residual time series, (right) Ljung-Box statistic to indicate
lack of significant serial correlation in the standardized residual series. Further analysis is pro-
vided in Table 5.

4.2 Model Diagnostics & Residual Analysis

In Table 2 we report the performance of our six candidate models. Based on these preliminary
diagnostics, we select our GARCH(1,1) as the most parsimonious model with the best overall
performance. We specifically choose the GARCH(1,1) model under an assumed Student’s t-
distribution, as this model performed notably better than those under a normally distributed
residual assumption.

A summary of this fitted model is shown in Table 3, indicating the specific parameters
used in the model. We provide standardized residual analysis in Figure 4, indicating there
is no serial correlation. We provide further analysis in Table 5 that confirms our model is
appropriately fitted; we show that the standardized residuals exhibit no ARCH effects and
fit the assumed Student’s t-distribution well. Combined with the constant mean process we
identified in Section 3.1, we use the final ARMA(0,0)-GARCH(1,1) model under Student’s t-
distribution to forecast future volatility in the series of log-returns of the NASDAQ Composite
Index. Our results are shown in Table 4.

Table 3: Estimation for GARCH(1,1) in log-returns of the NASDAQ Composite Index, fitted
under Student’s t-distribution.

Parameter Estimate Std. Error t-value p-value
I 0.0132687 0.0021841 6.075 < 0.001
g 0.0002773 0.0001342 2.066 0.038802
o 0.2218715 0.0706947 3.138 0.001698
B 0.7235482 0.0805776 8.980 < 0.001
v (shape) 6.3768236 1.6699582 3.819 0.000134




Table 4: Forecast of NASDAQ log-returns with a ARMA(0,0)-GARCH(1,1) model under Stu-
dent’s t-distribution and a Normal distribution.

Month  Mean Forecast Mean Error Std. Lower Upper

3-2023 0.0132687 0.06466891 0.06466891 -0.1159727 0.1425101
4-2023 0.0132687 0.06504719 0.06504719 -0.1167287 0.1432661
5-2023 0.0132687 0.06540282 0.06540282 -0.1174394 0.1439768
6-2023 0.0132687 0.06573727 0.06573727 -0.1181078 0.1446452
7-2023 0.0132687 0.0660519 0.0660519 -0.1187366 0.145274
8-2023 0.0132687 0.06634799 0.06634799 -0.1193283 0.1458657

5 Summary and Conclusions

In this paper, we consider the historical prices and returns of the NASDAQ Composite Index
(from 1985-2023) as a demonstrative case study of ARCH modeling. More broadly, we studied
how to identify and classify ARCH effects within asset prices that we couldn’t capture with
traditional autoregressive processes. By looking at the connection between risk and volatility,
we discussed how financial time series are a particularly interesting target for the analysis of
conditional-level fluctuations in variance. From there, we described how the ARCH framework
introduced by Engle (1982) fits into the literature and why his breakthroughs found such
successful applications in econometric models for the past forty years.

We start by breaking down our series into a mean and residual innovation process. Though
stationary, the series of monthly log returns of the NASDAQ itself does not exhibit any sig-
nificant autocorrelation, so our mean process is found to be redundant; with no meaningful
autocorrelation effects in the data, we consider the log-return series as our base residual se-
ries. While we expect this series to behave like white noise (and indeed, it does appear to
have no significant serial correlation) there is a clear dependence at the conditional level of the
data. There is a high serial correlation in the squared log-returns series, suggesting there is
an underlying dependence and fluctuation in conditional variance. By identifying this condi-
tional heteroskedasticity, clusters of volatility, and leptokurticity, we find that our log-returns
series exhibits ARCH effects. Having identified these ARCH effects, we discuss the selection
of both ARCH and Generalized ARCH (GARCH) models to study this behavior. We focus
on low-order ARCH and GARCH models and go on to identify a GARCH(1,1) model to be
the most performant. We additionally find that fitting to the residuals of this model under
the Student’s t-distribution is more appropriate than the Normal distribution. This is seen
in the performance of all 6 fitted models we study. Using our results, we find that our final
ARMA(0,0)-GARCH(1,1) model under the Student’s t-distribution fits well to the historical
log-returns data. Residual analysis indicates a strong fit while being sufficiently parsimonious
and forecasting well.
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Appendices

A Further Model Diagnostics

Table 5: Summary of ARMA (0,0)-GARCH(1,1) model performance and standardized residuals
tests under a Student’s t-distribution. With no serial correlation in the standard residuals (and
matching the distribution assumption), we find that the model is a good fit of the data. This is
further supported by the principle of parsimony, as we achieve these results with few parameters
and low ARCH order.

Performance
Log Likelihood 680.5589
AlIC -2.950039
BIC -2.904986
SIC -2.950274
HQIC -2.932295
Standardized Residuals Tests
Jarque-Bera Test 863.7822 p-value = 0
Shapio-Wilk Test 0.9344609 p-value = 2.657985e-13
Ljung-Box Test (R, Q(10)) 7.304218 p-value = 0.6964466
Ljung-Box Test (R, Q(15)) 9.433403 p-value = 0.8537886
Ljung-Box Test (R, Q(20)) 13.28696 p-value = 0.8647351
Ljung-Box Test (R?, Q(10)) 1.527112 p-value = 0.9988484
Ljung-Box Test (R?, Q(15)) 6.581835 p-value = 0.9682328
Ljung-Box Test (R?, Q(20)) 7.04916 p-value = 0.9965207
LM Arch Test (R, TR?) 2.372653 p-value = 0.9985833
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B R Code

* Additional plotting functions and helper methods can be found in the following repository:
https://github.com/sim15/mad64X_ts_report_code

library(zoo)
library(dse)

library (LSTS)
library(fGarch)
library(extrafont)
library(ggplot2)
library(tseries)
font_install("fontcm")
loadfonts()

setPdf <- function(fname, w, h) {
pdf (file=fname, height=h, width=w, family="CM Roman")
par(
family="CM Roman"
)

# pdf(file=fname, height=h, width=w)
}

# plotting functions
source("plotter.R")

# load raw data

nasdaq <- read.csv(""IXIC (1).csv", header=T)
ts.nasdaq <- ts(nasdaq$Adj.Close)
nasdaq.logreturns <- diff (log(ts.nasdaq))

# plot of monthly prices and returns (two graphs)

{

setPdf ("./nasdagFigs/monthlyPricesLogReturns.pdf", 8, 3)
dailyPricesReturns(ts.nasdaq, nasdaq.logreturns)
dev.off ()

}

# plot acf and pacf corelogram

{
setPdf ("./nasdaqFigs/acfpacf.pdf", 1.2%9, 1.2x%3)
acfPacfPlot (nasdaq.logreturns, maxLag=40)
dev.off ()

# plot summary statistics + Q- plot

-~

setPdf ("./nasdaqFigs/summaryStats.pdf", 1.7%8, 1.7%3)
summaryPlot (nasdaq.logreturns)
dev.off ()

# plot combined returns and price of data
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{

setPdf ("./nasdagFigs/combinedReturns.pdf", 1.2*%9, 1.2%5)
o0ldCombined(ts.nasdaq, nasdaq.logreturns,

dev.off ()

}

ylim1=c(0,23000),

ylim2=c(-1,0.2),

ylabl=seq(0, 15000, by = 3000),

ylab2=seq(-0.3, 0.3, by = 0.15),

legendLabel=c ("NASDAQ", "NASDAQ Returns"),
mainn="Monthly Closing Price and Returns of NASDAQ
roundDigits=3)

# ADF test results for stationarity
adf .test (nasdaq.logreturns)

# all model fits (nmormal and Student's t-distribution)
fit.archl.norm=garchFit(
nasdaq.logreturns garch(1,0),
data=nasdaq.logreturns,trace=F)
fit.archl.std=garchFit(nasdaq.logreturns”garch(1,0),

fit

fit.

fit.

fit.

fit.

fit.

fit.

fit.

fit.

fit.

data=nasdaq.logreturns,trace=F,
cond.dist="std")

.arch2.norm=garchFit (nasdaq.logreturns garch(2,0),

data=nasdaq.logreturns,
trace=F)

arch2.std=garchFit (nasdaq.logreturns garch(2,0),

data=nasdaq.logreturns,trace=F,
cond.dist="std")

arch3.norm=garchFit (nasdaq.logreturns garch(3,0),

data=nasdaq.logreturns,trace=F)

arch3.std=garchFit(nasdaq.logreturns garch(3,0),

garchil.

garchil.

garchl2

garchl2.

garch21.

garch21.

data=nasdaq.logreturns,trace=F,
cond.dist="std")

norm=garchFit (nasdaq.logreturns~garch(1,1),
data=nasdaq.logreturns,trace=F)

std=garchFit(nasdaq.logreturns”garch(1,1),
data=nasdaq.logreturns,trace=F,
cond.dist="std")

.norm=garchFit (nasdaq.logreturns garch(1,2),

data=nasdaq.logreturns,trace=F)
std=garchFit(nasdaq.logreturns”garch(1,2),
data=nasdaq.logreturns,trace=F,
cond.dist="std")

norm=garchFit (nasdaq.logreturns~garch(2,1),
data=nasdaq.logreturns,trace=F)

std=garchFit (nasdaq.logreturns”garch(2,1),
data=nasdaq.logreturns,trace=F,
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cond.dist="std")

# plot restdual summary of model

{
setPdf ("./nasdaqFigs/standardResidualSummary.pdf", 0.7*14, 0.7%*5)

residualPlots(residuals(fit.garchll.std, standardize=TRUE))
dev.off ()
}

# fit model and predictions results
summary (fit.garchll.std)

predict(fit.garchll.norm, n.ahead=6, plot = T)
predict(fit.garchll.std, n.ahead=6, plot = T)

plot(fit.garchil.std)
fit.garchil.std
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